Guanglu Zhang, Elissa Morris, Douglas Allaire, Daniel A. McAdams
J. Mech. Des. Aug 2020, 142(8): 081401
Pubished online: February 14, 2020
J. Mech. Des. Aug 2020, 142(8): 081401
Pubished online: February 14, 2020
Many modern products, such as automobiles, aircrafts, laptops and smartphones, are engineered systems. The performance, function, and architecture of an engineered system continuously changes and improves over time. For example, cell phones of the 1990’s were limited to phone calls and text messages. Today’s cell phones are computers capable of cinematography and reading the news. Research in engineered system evolution goes beyond tracking and predicting the technical performance and the functional and architectural changes of existing engineered systems. This research also studies how and why these changes occur and searches for causal factors behind these evolutions. The results of this research are valuable for designers, R&D managers, investors, and policy makers by aiding the generation of innovative design concepts, setting reasonable R&D targets, investing in promising technologies, and developing effective incentive policies. This paper summarizes key research questions, identifies pioneering literature, and discusses the opportunities and challenges for future research in engineered system evolution. Importantly, a free access database is provided for facilitating future research in this area. The database currently includes more than 100,000 data points that belong to 31 technical performance metric categories of 7 engineering systems (i.e., passenger aircraft, orbital launch system, automobile, computer, refrigerator, lamp, and direct-fire ground weapon systems) and their components.
For the Full Article please see ASME’s Digital Collection.