2/22/2018 Sheng Yang and Yaoyao Fiona Zhao
J. Mech Des 140(3):031702-031702-12. doi:10.1115/1.4038922
Part count reduction (PCR) is one motivation for using additive manufacturing (AM) processes. PCR helps simplify product structure, eliminate auxiliary connecters, and reduce assembly difficulties and cost. However, PCR may also increase manufacturing difficulty and the irreplaceability of failed subcomponents. This paper presents a pioneering investigation of how AM-enabled PCR (AM-PCR) impacts lifecycle activities. A new set of design rules and principles are proposed for PCR that lead to lowered cost and enhanced performance. The PCR problem is formulated as a combinatory optimization problem where the objective is minimizing lifecycle cost/performance ratio while ensuring conformance to all constraints (e.g. manufacturing, maintenance, and recycling). To address the challenge of computational cost, a dual-level screening and refinement product redesign framework is presented that first searches for the minimum grouping solution and then refines the remaining combinations using design optimization. This approach will help designers automate the part count reduction process enabled by additive manufacturing while exploring new design innovation opportunities.
For the full article please visit ASME’s Digital Collection.