Journal of Mechanical Design

companion website

FEATURED ARTICLES

OPTIMAL DESIGN OF PANEL REINFORCEMENTS WITH RIBS MADE OF PLATES


8/14/2017 Shanglong Zhang and Julián A. Norato
J. Mech. Des 139(8), 081403 (2017); doi: 10.1115/1.4036999

 Reinforcing ribs can significantly increase the stiffness of panels. In this study, we formulate a computational design method to determine the optimal position, dimensions and orientation of ribs made of stock plates and welded to a panel to maximize its stiffness. Typical applications of welded rib reinforcements are large metallic structures with low production volumes, for which other processes such as machining or stamping are either infeasible or too costly.  These applications include, for example, ship hulls, fuel tanks, aircraft wing structures and linkage components in heavy machinery. To determine the optimal ribs layout, we formulate a topology optimization technique whereby a feature-based geometric representation of the rib is smoothly mapped onto a finite element mesh for analysis. This mesh remains fixed throughout the optimization, thus circumventing re-meshing upon changes in the ribs layout. Importantly, our method enforces geometric constraints to ensure manufacturability, namely that: a) ribs must remain vertical at all times to ensure a good quality weld; b) the ribs dimensions must not exceed those of available stock plates; c) ribs should not encroach the space above holes on the panel used for routing other components or for access; and d) there must be a minimum spacing between ribs to ensure adequate access for the welding gun. Ours is the first method to determine the optimal layout of welded ribs made of flat plates within a 3-dimensional design envelope that satisfies the foregoing geometric constraints.

OPTIMAL DESIGN OF PANEL REINFORCEMENTS WITH RIBS MADE OF PLATES

For the full article please visit ASME’s Digital Collection.

SHARE: 

Featured Articles Subjects

Additive Manufacturing
Ancient design
Artificial Intelligence
Associate Editors
Awards
Bioinspired Design
Complex Engineered Systems
Compliant Mechanisms
Composites
Data Driven Design
Data Mining
Data-driven Design
Design Automation
Design Communities
Design Education
Design Fixation
Design Innovation
Design of Mechanisms and Robotic Systems
Design Optimization
Design Research
Design Theory
Design Theory And Methodology
Digital Twin
Direct Contact Mechanisms
Double-Blind Review Option
Dynamics
Editors' Choice Award
Energy
Engineered Materials And Structures
Ethics
Fluids
Gears
Generative Design
Guest Editorials
IDETC
Industry
Information Design
International Perspectives
JMD History
JMD Review Process
JMD Statistics
Kinematics
Leadership
Machine Learning
Manufacturing
Mechanisms
Mechanisms Robotics
Memoriam
Neural Networks
Optimization
Origami
Orthotics
Piezoelectric Actuators
Power transmission gearing
Product Development
Robotics
Simulation-based Design
Smart Structures
Special Issues
Sustainable Design