6/27/2016 Pouya Tavousi, Kazem Kazerounian and Horea Ilies
J. Mech. Des 138(6); doi: 10.1115/1.4033394
The synthesis of functional molecular mechanisms is constrained by the notorious difficulties in fabricating nano-links of prescribed shapes and sizes. Thus, the classical mechanism synthesis methods, which assume the ability to manufacture any designed links, cannot provide a systematic process for designing molecular mechanisms. We propose a new approach to build functional mechanisms with prescribed mobility by only using elements from a predefined “link soup”. The resulting synthesis procedure is the first of its kind that is capable of systematically synthesizing functional linkages with prescribed mobility constructed from a soup of primitive entities. Furthermore, the proposed systematic approach outputs the ATLAS of candidate mechanisms, which can be further processed for downstream applications. Although the scope of this technique is rather general, its immediate application is the design of molecular machines assembled from nano-links that either exist in nature or can be fabricated.
For the Full Research Paper see ASME’s Digital Collection.