Journal of Mechanical Design

companion website

FEATURED ARTICLES

TOWARD A UNIFIED DESIGN APPROACH FOR BOTH COMPLIANT MECHANISMS AND RIGID-BODY MECHANISMS: MODULE OPTIMIZATION

12/7/2015 Lin CaoAllan T. DolovichArend L. SchwabJust L. Herder and Wenjun (Chris) ZhangJ. Mech. Des 137(12), 122301; doi: 10.1115/1.4031294

Rigid-body mechanisms (RBMs) and compliant mechanisms (CMs) are traditionally treated in significantly different ways. In this paper, we present an approach to the synthesis of both RBMs and CMs. In this approach, RBMs and CMs are generalized into mechanisms that consist of five basic modules, including Compliant Link (CL), Rigid Link (RL), Pin Joint (PJ), Compliant Joint (CJ), and Rigid Joint (RJ). The link modules and joint modules are modeled with beam and hinge elements, respectively, in a geometrically nonlinear finite element solver, and subsequently a discrete beam-hinge ground structure model is established. Based on this discrete beam-hinge model, a procedure that follows topology optimization is developed, called module optimization. Particularly, in the module optimization approach, the states (both presence or absence and sizes) of joints and links are all design variables, and one may obtain a RBM, a partially CM, or a fully CM for a given mechanical task. The proposed approach has thus successfully addressed the challenge in the type and dimensional synthesis of RBMs and CMs. Three design examples of the path generator are discussed to demonstrate the effectiveness of the proposed approach.

TOWARD A UNIFIED DESIGN APPROACH FOR BOTH COMPLIANT MECHANISMS AND RIGID-BODY MECHANISMS: MODULE OPTIMIZATION

For the Full Article please visit ASME’s Digital Collection.

SHARE: 

Featured Articles Subjects

Additive Manufacturing
Ancient design
Artificial Intelligence
Associate Editors
Awards
Bioinspired Design
Complex Engineered Systems
Compliant Mechanisms
Composites
Data Driven Design
Data Mining
Data-driven Design
Design Automation
Design Communities
Design Education
Design Fixation
Design Innovation
Design of Mechanisms and Robotic Systems
Design Optimization
Design Research
Design Theory
Design Theory And Methodology
Digital Twin
Direct Contact Mechanisms
Double-Blind Review Option
Dynamics
Editors' Choice Award
Energy
Engineered Materials And Structures
Ethics
Fluids
Gears
Generative Design
Guest Editorials
IDETC
Industry
Information Design
International Perspectives
JMD History
JMD Review Process
JMD Statistics
Kinematics
Leadership
Machine Learning
Manufacturing
Mechanisms
Mechanisms Robotics
Memoriam
Neural Networks
Optimization
Origami
Orthotics
Piezoelectric Actuators
Power transmission gearing
Product Development
Robotics
Simulation-based Design
Smart Structures
Special Issues
Sustainable Design