Journal of Mechanical Design

companion website

FEATURED ARTICLES

REDUNDANCY ALLOCATION OPTIMIZATION FOR MULTISTATE SYSTEMS WITH FAILURE INTERACTIONS USING SEMI-MARKOV PROCESS


10/15/2015Jing Wang and Mian Li
J. Mech. Des 137(10), 101403; doi: 10.1115/1.4031297 

Adding redundancy is a widely used method in engineering to improve the system reliability. How to add redundancy, (i.e., to meet the reliability requirement with the minimum cost), is an interesting topic in system design. Traditionally, the optimal redundancy allocation scheme is obtained under two simplified assumptions, i.e., binary states of each component and no failure dependency between components. The binary-state assumption assumes that each component and the entire system can only have two states: fully operational and completely failed. The failure independency assumption assumes no failure interaction between components, i.e., one component failure will not affect the failure process of other components. Although those two assumptions can simplify the analysis, they may lead to inaccurate reliability predictions and thus results in doubtful and misleading redundancy allocation scheme which in fact may not meet the reliability requirement. This work proposes a method to obtain the optimal redundancy allocation scheme by using the Semi-Markov process and optimization techniques without those two simplified assumptions. The target system is a type of commonly-seen system having multiple states and failure interactions. The target system contains a main subsystem providing the required output and an auxiliary subsystem helping the main subsystem function normally, such as the rotating subsystem and the lubricating subsystem, the computer mother board and the fan, and so on. A case study of a shipboard power electronic cabinet demonstrates the applicability of the proposed approach. 

Picture

For the Abstract and Full Article see ASME’s Digital Collection.

SHARE: 

Featured Articles Subjects

Additive Manufacturing
Ancient design
Artificial Intelligence
Associate Editors
Awards
Bioinspired Design
Complex Engineered Systems
Compliant Mechanisms
Composites
Data Driven Design
Data Mining
Data-driven Design
Design Automation
Design Communities
Design Education
Design Fixation
Design Innovation
Design of Mechanisms and Robotic Systems
Design Optimization
Design Research
Design Theory
Design Theory And Methodology
Digital Twin
Direct Contact Mechanisms
Double-Blind Review Option
Dynamics
Editors' Choice Award
Energy
Engineered Materials And Structures
Ethics
Fluids
Gears
Generative Design
Guest Editorials
IDETC
Industry
Information Design
International Perspectives
JMD History
JMD Review Process
JMD Statistics
Kinematics
Leadership
Machine Learning
Manufacturing
Mechanisms
Mechanisms Robotics
Memoriam
Neural Networks
Optimization
Origami
Orthotics
Piezoelectric Actuators
Power transmission gearing
Product Development
Robotics
Simulation-based Design
Smart Structures
Special Issues
Sustainable Design