Journal of Mechanical Design

companion website

FEATURED ARTICLES

ROBUST DESIGN FOR MULTIVARIATE QUALITY CHARACTERISTICS USING EXTREME VALUE DISTRIBUTION


11/12/2014 Authors: Changming Yang, Xiaoping Du
J. Mech. Des. 136(10), 101405 (2014) (8 pages) Paper No: MD-13-1534; 
doi: 10.1115/1.4028016 

Robust design makes product performance stable under variations and noises in the environment. So the product can work robustly even in harsh conditions. This work explores a way to measure the robustness of a product when it has multiple performance variables, such as strength, efficiency, and cost. These performance variables are dependent and oftentimes conflicting, meaning that improving one performance variable may make others worse. The robustness of the worst-case performance variable is used as an indicator of the robustness of the entire product. Analytical and numerical algorithms are developed to calculate the robustness. The work makes it easy to model the robust design optimization with multiple performance variables as the single-objective optimization, thereby increasing the effectiveness of the robustness design process.

ROBUST DESIGN FOR MULTIVARIATE QUALITY CHARACTERISTICS USING EXTREME VALUE DISTRIBUTION

For the Full Article see ASME’s Digital Collection

SHARE: 

Featured Articles Subjects

Additive Manufacturing
Ancient design
Artificial Intelligence
Associate Editors
Awards
Bioinspired Design
Complex Engineered Systems
Compliant Mechanisms
Composites
Data Driven Design
Data Mining
Data-driven Design
Design Automation
Design Communities
Design Education
Design Fixation
Design Innovation
Design of Mechanisms and Robotic Systems
Design Optimization
Design Research
Design Theory
Design Theory And Methodology
Digital Twin
Direct Contact Mechanisms
Double-Blind Review Option
Dynamics
Editors' Choice Award
Energy
Engineered Materials And Structures
Ethics
Fluids
Gears
Generative Design
Guest Editorials
IDETC
Industry
Information Design
International Perspectives
JMD History
JMD Review Process
JMD Statistics
Kinematics
Leadership
Machine Learning
Manufacturing
Mechanisms
Mechanisms Robotics
Memoriam
Neural Networks
Optimization
Origami
Orthotics
Piezoelectric Actuators
Power transmission gearing
Product Development
Robotics
Simulation-based Design
Smart Structures
Special Issues
Sustainable Design